Cutting Edge Hydrogen Energy Research:  Green Hydrogen  Research, Innovation, Technology, News, Resources,  Insights
Hydrogen Density, Energy Content at Various Pressure Levels (CGH2), Liquid Hydrogen (LH2), Cryo Compressed Hydrogen CcH2
Hydrogen Density, Energy Content at Various Pressure Levels (CGH2), Liquid Hydrogen (LH2), Cryo Compressed Hydrogen CcH2

Hydrogen Density, Energy Content at Various Pressure Levels (CGH2), Liquid Hydrogen (LH2), Cryo Compressed CcH2

Hydrogen Density, Energy Content or volumetric energy density at various pressure levels CGH2, Liquid Hydrogen LH2, Cryo Compressed Hydrogen CcH2. Gravimetric Energy Density is a constant where as volumetric energy density varies with pressure and state, temperature.

Hydrogen density, energy content

Hydrogen at Normal Temperature and Pressure (NTP 20°C, 1 atm):

  • State: Gaseous
  • Density: Approximately 0.08376 kg/m³ = 0.00008376 kg/L = 0.08376 g/L.
  • Volumetric Energy Density:
    0.00008376 kg/L×33.3 kWh/kg≈ 0.00279 kWh/L = 0.010044 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg (inherent property).

Compressed Gaseous Hydrogen (CGH₂) at 10 bar (20°C):

  • State: Gaseous
  • Density: Approximately 0.84 kg/m³ = 0.00084 kg/L = 0.84 g/L.
  • Volumetric Energy Density:
    0.00084 kg/L×33.3 kWh/kg ≈ 0.028 kWh/L = 0.1008 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Compressed Gaseous Hydrogen (CGH₂) at 100 bar (20°C):

  • State: Gaseous
  • Density: Approximately 8.4 kg/m³ = 0.0084 kg/L = 8.4 g/L.
  • Volumetric Energy Density:
    0.0084 kg/L×33.3 kWh/kg ≈ 0.28 kWh/L = 1.008 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Compressed Gaseous Hydrogen (CGH₂) at 250 bar (20°C):

  • State: Gaseous
  • Density: Approximately 20.5 kg/m³ = 0.0205 kg/L = 20.5 g/L.
  • Volumetric Energy Density:
    0.0205 kg/L×33.3 kWh/kg≈ 0.68 kWh/L = 2.448 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Compressed Gaseous Hydrogen (CGH₂) at 350 bar (20°C):

  • State: Gaseous
  • Density: Approximately 23.8 kg/m³ = 0.0238 kg/L = 23.8 g/L.
  • Volumetric Energy Density:
    0.0238 kg/L×33.3 kWh/kg ≈ 0.79 kWh/L = 2.844 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Compressed Gaseous Hydrogen (CGH₂) at 700 bar (20°C):

  • State: Gaseous
  • Density: Approximately 39.8 kg/m³ = 0.039 kg/L = 39.8 g/L.
  • Volumetric Energy Density:
    0.04 kg/L×33.3 kWh/kg ≈ 1.33 kWh/L = 4.788 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Compressed Gaseous Hydrogen (CGH₂) at 1000 bar (20°C):

  • State: Gaseous
  • Density: Approximately 49.5 kg/m ³ = 0.0495 kg/L = 49.5 g/L
  • Volumetric Energy Density:
    0.0495 kg/L * 33.3 kWh/kg ≈ 1.65 kWh/L = 5.94 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Gaseous Hydrogen at Above 1000 bar (e.g., 1200 bar, 1500 bar):

  • State: Gaseous
  • Pressure: Above 1000 bar (e.g., example at 1200 bar)
  • Density (at 1200 bar): (Very Approximate) 52.9 kg/m ³ = 0.0529 kg/L = 52.9 g/L (Example, density gain diminishes significantly above 1000 bar)
  • Volumetric Energy Density (at 1200 bar): 0.0529 kg/L * 33.3 kWh/kg ≈ 1.76 kWh/L = 6.33 MJ/L (Marginal increase in volumetric energy density above 1000 bar)

Cryo-Compressed Hydrogen (CcH₂) at 250 bar, −40°C:

  • State: Cryo-Compressed
  • Density: Approximately 50 kg/m³ = 0.05 kg/L = 50 g/L.
  • Volumetric Energy Density:
    0.05 kg/L×33.3 kWh/kg ≈ 1.67 kWh/L = 6.012 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Cryo-Compressed Hydrogen (CcH₂) at 350 bar, −50°C:

  • State: Cryo-Compressed
  • Density: Approximately 55 kg/m³ = 0.055 kg/L = 55 g/L.
  • Volumetric Energy Density:
    0.055 kg/L×33.3 kWh/kg≈1.83 kWh/L=6.588 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Liquid Hydrogen (LH₂) at −253°C:

  • State: Liquid
  • Density: Approximately 70.8 kg/m³ = 0.0708 kg/L = 70.8 g/L.
  • Volumetric Energy Density:
    0.0708 kg/L×33.3 kWh/kg≈ 2.36 kWh/L= 8.496 MJ/L
  • Gravimetric Energy Density33.3 kWh/kg.

Hydrogen Density, Energy Content at Various Pressure Levels: Key Observations:

Most of the applications of hydrogen needs Compressed Gaseous Hydrogen (CGH₂) at 350 0r 700 bar which is a well matured technology, low cost comparatively.

  1. Volumetric Challenge:
    • Hydrogen’s energy density at NTP (0.00279 kWh/L) is ~3,400× lower than gasoline (~9.5 kWh/L).
    • Even 700 bar CGH₂ (1.33 kWh/L) achieves only ~14% of gasoline’s energy density.
    • CcH₂ (e.g., 350 bar, −50°C) bridges this gap to ~19% of gasoline (1.83 kWh/L).
  2. Gravimetric Advantage:
    • Hydrogen’s 33.3 kWh/kg far exceeds gasoline’s 12.7 kWh/kg, making it ideal for weight-sensitive applications (e.g., aviation).
  3. Practical Limits:
    • Liquid Hydrogen requires extreme cryogenics (−253°C) and faces boil-off losses.
    • 1000 bar CGH₂ is theoretical and impractical due to material/energy costs.

This data underscores the need for advanced storage technologies (LOHCs, metal hydrides, MOFs) to overcome hydrogen’s volumetric inefficiency.

This content is protected by copyright and cannot be reused without permission. For collaboration inquiries or to request content usage rights, please get in touch with us: info@thehydrogen.energy

Add comment